имея только теодолит и рейку определить высоту расположения высоковольтной лэп над автодорогой

Содержание
  1. Определение высоты сооружения теодолитом.
  2. Как пользоваться, работать теодолитом
  3. Устройство и принцип работы теодолита
  4. Установка теодолита, подготовка к работе (видео)
  5. Взятие отсчётов теодолитом
  6. Точность снятия отсчётов
  7. Определение высоты здания, строения теодолитом (+ видео)
  8. Измерение горизонтального угла теодолитом (+ видео)
  9. Полярный способ съемки теодолитом
  10. Погрешность замкнутого теодолитного хода, невязка
  11. Съёмка теодолитом методом створов и перпендикуляров
  12. Определение расстояния теодолитом с помощью дальномерной рейки
  13. Геодезия, видеолекция «Теодолитная, тахеометрическая съёмки»
  14. Работа с теодолитом
  15. ПУЭ 7. Правила устройства электроустановок. Издание 7
  16. Раздел 2. Канализация электроэнергии
  17. Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ
  18. Пересечение и сближение ВЛ с автомобильными дорогами
  19. Раздел 5. Определение превышений и отметок точек. Нивелир. Виды и способы нивелирования.

Определение высоты сооружения теодолитом.

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

Первый способ.

Второй способ.

Вопрос № 58.

Контроль установки конструкции по вертикали и горизонтали.

Для проверки вертикальности установки конструкции теодолитом необходимо навести центр нитей на нижнюю риску или край конструкции, а затем поднять зрительную трубу к верхней риске или краю. Если центр нитей не попадает на верхнюю риску, то присутствует отклонение от вертикали. Проверку необходимо провести в двух плоскостях.

Для проверки горизонтальности уложенной конструкции необходимо установить рейку на один край конструкции и взять отсчёт, затем на противоположный конец и взять отсчёт. Если конструкция горизонтальна, то оба отсчёта будут одинаковыми. Разница отсчётов показывает величину отклонения от горизонтали.

Источник

Как пользоваться, работать теодолитом

Т еодолит стал первым инструментом, изобретенным человечеством, позволяющий измерять горизонтальные и вертикальные углы. На сегодняшний день он вместе с нивелиром уверенно конкурирует со сложными электронными собратьями, обеспечивая достаточную точность полученных значений. Теодолит неприхотлив, прост в обращении, стоит же на порядок ниже → тахеометра (по ссылке рассказано как работать тахеометром), который является его старшим, более продвинутым собратом. Проведение сложных измерений с помощью теодолита невозможно без вычислительной техники и специальных знаний, а вот уметь определить горизонтальный и вертикальный углы, определить высоту строения, разбить прямоугольник или проверить правильность разбивки осей здания должен уметь каждый строитель. Тем более, как пользоваться теодолитом, при некоторой доле старания, может разобраться даже не специалист.

Содержание:
1. Устройство и принцип работы теодолита.
2. Установка теодолита, подготовка к работе (видео).
3. Взятие отсчётов теодолитом.
3. Точность снятия отсчётов.
4. Определение высоты сооружения теодолитом (+ видео).
5. Измерение горизонтального угла теодолитом (+ видео).
6. Полярный способ съёмки теодолитом.
7. Погрешность замкнутого теодолитного хода, невязка.
8. Съёмка теодолитом методом створов и перпендикуляров.
9. Определение расстояния теодолитом с помощью дальномерной рейки.
10. Геодезия, видеолекция «Теодолитная, тахеометрическая съёмки».

Видео-версия статьи

Устройство и принцип работы теодолита

Основа теодолита — зрительная труба, которая вращается в горизонтальной и вертикальной плоскостях. Труба соединена с микроскопом, с помощью которого можно получать значения углов, нанесённых на лимб, а при использовании специальной дальномерной рейки возможно и определение расстояния между точками как при → работе с нивелиром (как работать нивелиром рассказано по ссылке).

Teodolit F1

Принцип теодолитной съемки заключается в получении неизвестных значений координат и высот требуемой точки, опираясь на точки с известными значениями.

Перед началом съемки теодолит необходимо привести в рабочее положение. Инструмент устанавливается на штативе над точкой с известными координатами и приводится в горизонтальное положение специальными винтами, расположенными на подставке (1). В окуляр (2) мы видим центр визируемой точки, над которой устанавливаем инструмент, а уровни (3) помогают нам контролировать горизонтальное положение инструмента. Работая зажимными винтами штатива и подставки, добиваемся такого положения, когда инструмент установлен горизонтально над стартовой точкой. У новичков эта процедура вызывает некоторые трудности, а специалисты производят центрирование теодолита менее, чем за минуту. В высокоточных инструментах система центрировки – оптическая, в остальных используется отвес на нити.

Teodolit F2

Далее визиром (8) грубо наводимся на цель, а винтами (4,7) плавно подводим сетку нитей на центр снимаемого объекта, контролируя процесс с помощью зрительной трубы (9). Так как инструмент оптический, снять отсчет в тёмное время суток невозможно. Для работы нам понадобится настроить зеркальце (10) таким образом, чтобы в систему попадало как можно больше света. После визирования цели берем отсчет, воспользовавшись окуляром микроскопа (11).

Teodolit F3

Установка теодолита, подготовка к работе (видео)

Взятие отсчётов теодолитом

Отсчёт — это число, состоящие из градусов, минут и секунд (секунд не всегда). Посмотрев в микроскоп увидим верхнюю и нижнюю шкалу, маркированную, соответственно, для снятия отсчётов по вертикальному и горизонтальным кругу.

Есть шкаловый микроскоп и микроскоп-оценщик (штриховой микроскоп). Микроскоп-оценщик сразу показывает нужный угол по горизонтальной и вертикальной оси в градусах и минутах, правда точность немного снижена чем у шкалового микроскопа, поскольку минимальное деление равно 10 минутам, а с точностью до минуты приходится определять на глаз.

img fWveJn

Микроскоп-оценщик (слева) и шкаловый микроскоп теодолита

Есть 2 шкалы, которые изменяют своё положение по отношению друг к другу — шкала лимба и шкала алидады. В шкаловом микроскопе на шкалу алидады нанесены цифры от 1 до 6 и 60 делений, соответствующие 60 минутам. Шкала алидады подвижна.

В шкаловом микроскопе значением градусов будет являться то число, которое попало на шкалу алидады для горизонтального угла или, соответственно, вертикального. Значением в минутах будет являться то число, на которое указывает значение градусов шкалы лимба на шкале алидады. К примеру, на снимке ниже мы увидим значения горизонтального и вертикального углов, соответственно, 181 градус 43 минуты и 121 градус 2 минуты

image190

Точность снятия отсчётов

Со временем подшипники в устройстве могут истираться, что негативно сказывается на полученных значениях. Для этого отсчёт берут несколько раз, при разных значениях круга (лимба) микроскопа.

Для исключения коллимационных ошибок зрительную трубу переводят через зенит, попорачивают теодолит на 180 градусов и заново берут отсчёты. Из нескольких значений получается среднее арифметическое, которое и будет верным значением измеряемого угла. Если отсчеты значительно отличаются (более минуты), процедуру следует повторить.

Кроме метода перевода через зенит, существует метод полуприёмов, когда лимб смещается на целое значение угла градусов и отсчёт берётся второй раз. Для перестановки лимба существуют винты (5, 6). Например, значение горизонтального угла составляет 358 градусов 45 минут. После снятия отсчёта, винтом (6) смещают начальную точку лимба на целое значение градусов угла (для удобства), закрепляя его винтом (5). К примеру, сместив лимб на 90°, мы должны получить значение угла по горизонтальному кругу 358°45′ + 90° = 88°45′.

Определение высоты здания, строения теодолитом (+ видео)

Для примера рассмотрим формулу определения высоты здания, строения, столба и т.п. Берём теодолитом и мерной лентой отсчёты значений, указанных на рисунке ниже, и записываем их в таблицу (тетрадь).

image138

Теодолит располагают на расстоянии, не меньшем высоты строения, если это невозможно, то как можно дальше от объекта. Далее по формуле h = h1 + h2 = d(tgv1 + tgv2) вычисляем высоту строения.

Если линия АВ имеет уклон на местности, необходимо рассчитать горизонтальное проложение этой линии, её проекцию на горизонтальную плоскость по формуле d = Scosν снимая отсчёты как показано на рисунке ниже.

gorizontprologenie

Горизонтальное проложение линии

Как определить высоту сооружения расскажет это видео, с расчётами и формулами.

Измерение горизонтального угла теодолитом (+ видео)

Для измерения горизонтального угла теодолитом нужно установить теодолит в один из углов треугольника. Определить правое и левое направление. Где будет располагаться ноль на шкале — не суть важно, мы можем получить значение угла как разность отсчётов двух точек. Навестись на первую точку, взять отсчёт. Воспользовавшись одним из способов выше для проверки значения, взять отсчёт второй раз и вычислить среднее значение, если расхождение не больше 1 минуты, то измерения сделаны верно. Ведём запись в журнал (тетрадь). Далее наводимся на вторую точку, так же берём отсчёт. Если значение правого угла меньше чем левого, к нему нужно прибавить 360 градусов. Разность отсчётов и будет нашим углом.

Полярный способ съемки теодолитом

В строительстве в основном используют два способа съемки – полярный (рис. 1) и способ створов и перпендикуляров (рис 2). Другие способы съёмки теодолитом: способ угловых засечек, линейных засечек, способ вспомогательных створов и способ обхода.

При полярном способе мы отталкиваемся от двух точек с известными значениями. Эти точки можно взять из уже существующего проекта, плана, государственной геодезической сети (при наличии СРО), либо при самостоятельной разработке плана задать эти точки самостоятельно, начиная с самостоятельно определённого ноля по x;y;z координат. Полярный способ бывает замкнутый и разомкнутый.

Рассмотрим для начала разомкнутый способ, который мы потом приведём к замкнутому. Инструмент устанавливается на исходную точку 2, берётся начальный отсчёт на исходную точку 1, либо наоборот. Измеряется расстояние рулеткой, мерной лентой или дальномером до точки теодолитного хода 1, устанавливается метка (колышек заподлицо с землёй, либо вертикальная рейка). Измеряется левый по ходу угол на точку теодолитного хода 1. Дойдя до съёмочной точки 2 мы последовательно вычисляем значения горизонтальных углов к каждой из точек контура (рис. 1). Таким образом так же можно измерить расстояния до точек объекта съёмки и вертикальные углы с любой нужной вам точки теодолитного хода. Далее, пользуясь формулами вычислить необходимые значения и расстояния, многие расчёты приведены в нескольких видео на этой странице.

Teodolit R1

Последний этап – «привязка» теодолитного хода к известным точкам и создания → плана местности на бумаге (по ссылке рассказано как сделать план или схему местности). Так как контрольные точки находятся в одной системе координат, данный полигон можно привести к замкнутому, доведя ход от контрольной точки 2 до исходной точки 1. Далее нужно вычислить погрешность замкнутого теодолитного хода, которая вычисляется проще, чем для разомкнутого.

Погрешность замкнутого теодолитного хода, невязка

В результате несложных расчётов мы получим невязку, которую сравниваем с допустимой. В случае, если значение в допуске, погрешность пропорционально раскидывается в стороны полигона.

Для замкнутого теодолитного хода погрешность определяется по формуле:

nevyazka1

Где nevyazka2сумма углов фактическая (измеренная), а nevyazka3— сумма углов теоретическая, то есть которая должна быть по законам геометрии.

Вычисляется теоретическая сумма углов по формуле:

nevyazka4

Где n — число измеренных углов.

Допустимая погрешность суммы углов замкнутого теодолитного хода определяется по формуле:

191940 nomer m7a63c485 1

Если фактическая погрешность больше допустимой, ещё раз проверяем записи, если проблема не в этом, берём отсчёты заново. Если погрешность меньше или равна допустимой вычисляем поправку по формуле:

pogreshnost

Значение раскидываем на все углы. Если число получается не целое, в одни углы вводим поправки больше чем в другие.

Съёмка теодолитом методом створов и перпендикуляров

Метод створов и перпендикуляров хорошо подходит при разбивочных работах. В этом случае мы откладываем на местности прямые углы, последовательно переставляя инструмент на полученные точки на местности. К примеру, от базисной стороны 1-2 мы получаем контрольное направление 1. Сетка нитей в этом случае играет роль шнурки. Измерив, необходимое расстояние, попадаем в стартовую разбивочную точку, а дальше работаем согласно схеме.

Teodolit R2

Теодолитом можно разбить прямоугольный полигон или проконтролировать соосность разбитого полигона. Теоретическая сумма углов в замкнутом контуре должна быть равна 360°. Устанавливая последовательно инструмент в каждую из точек объекта, измеряем внутренние углы. К примеру, невязка в 1° на 10-метровом отрезке составляет примерно 20 см. Так что можно оценить допуски в зависимости от класса сооружения, и при необходимости внести коррективы в разбивку осей.

Определение расстояния теодолитом с помощью дальномерной рейки

С помощью теодолита можно определить и расстояние до точки взятия отсчётов, с погрешностью примерно в 10 см. Устанавливаем дальномерную рейку на точку, до которой хотим измерить расстояние. В визирной сетки теодолита есть 2 дальномерных штриха, расположенных сверху и снизу. Измерение расстояние производится просто. Считаем количество сантиметров от одного горизонтального дальномерного штриха до другого и умножаем полученное значение на дальномерный коэффициент трубы, который обычно равен 100.

i e603776c9a07bfc1 html d036cc18

Определение расстояния теодолитом при помощи дальномерной рейки по дальномерным нитям

На приведённом примере расстояния до рейки будет примерно 19,4 метра.

Геодезия, видеолекция «Теодолитная, тахеометрическая съёмки»

Подробнейшую информацию о работе с теодолитом, с формулами можно узнать из этого видео.

Оставляйте ваши советы и комментарии ниже. Подписывайтесь на новостную рассылку. Успехов вам, и добра вашей семье!

Источник

Работа с теодолитом

Работа с теодолитом – тема настоящей инструкции. Ниже поэтапно приведена методика измерения теодолитом, аккуратное выполнение пунктов которой обеспечит получение точных результатов. Настоящая инструкция предполагает, что пользователь обладает начальными знаниями о том, как работать с теодолитом, знаком с основными узлами и принципом работы прибора.

Установка теодолита в рабочее положение

Измерение горизонтальных углов теодолитом предполагает установку прибора в вершине определяемого угла. Для этого сначала ставят штатив так, чтобы центр площадки для установки штатива был примерно над точкой, а плоскость площадки – горизонтальна. Только после этого теодолит закрепляют на штативе, центрируют и горизонтируют прибор.

Горизонтирование теодолита – это последовательное горизонтирование плоскости лимба горизонтального угломерного круга (ГУК) и приведение вертикальной оси вращения в отвесное положение. Процесс горизонтирования контролируется по цилиндрическому уровню алидады ГУК и производится посредством подъёмных винтов теодолита. Поворачивая алидаду, направляют ось уровня по двум подъёмным винтам и перемещают пузырёк уровня в центр. Затем следует повернуть алидаду на 90° и, используя третий подъёмный винт, вновь перевести пузырёк в центр. Действия необходимо повторять до тех пор, пока пузырек не станет сходить с середины при всех позициях алидады горизонтального круга. Допустимое его отклонение не больше двух делений шкалы цилиндрического уровня.

izmerenie uglov teodolitom1

Для получения достоверного результата работа с теодолитом требует соблюдения двух геометрических условий:

Измерение горизонтального угла теодолитом
Визирование

Визирование – совмещение центра сетки нитей с точкой.

Сетка нитей – это стеклянная пластина с нанесёнными на нём линиями (характер их нанесения может быть разным). Пересечение средних линий называют центром сетки нитей Z.

izmerenie uglov teodolitom2

Наведение центра нитей на точку

Для визирования теодолита на точку необходимо:

Измерение горизонтального угла β

Измерение горизонтального угла теодолитом предполагает установку прибора в вершине измеряемого горизонтального угла (т.н. станция), а рейки на станциях n+1 и n–1.

Перекрестие сетки нитей совмещают с самой нижней видимой точкой рейки так, чтобы вертикальная нить совпадала с осью рейки.

Затем выполняют следующую последовательность действий (первый полуприём):

Измерение горизонтального угла на станции n:
β – горизонтальный угол

Источник

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 2. Канализация электроэнергии

Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ

Пересечение и сближение ВЛ с автомобильными дорогами

2.5.256. Требования, приведенные в 2.5.256-2.5.263, распространяются на пересечения и сближения с автомобильными дорогами: ¶

Пересечение и сближение ВЛ с федеральными дорогами общего пользования должны также соответствовать требованиям правил установления и использования придорожных полос федеральных автомобильных дорог общего пользования. ¶

Угол пересечения с автомобильными дорогами не нормируется. ¶

2.5.257. При пересечении автомобильных дорог категорий IA и IБ опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерного типа нормальной конструкции. ¶

На ВЛ с подвесными изоляторами и нерасщепленным проводом в фазе с площадью сечения алюминиевой части 120 мм 2 и более натяжные гирлянды изоляторов для провода должны быть двухцепными с раздельным креплением каждой цепи к опоре. ¶

Натяжные многоцепные гирлянды изоляторов для расщепленной фазы, состоящие из двух-пяти цепей, следует предусматривать с раздельным креплением каждой цепи к опоре. ¶

Допускается в пролете пересечения дорог категорий IA и IБ, ограниченном анкерными опорами, установка промежуточных опор за пределами водопропускной канавы у подошвы дорожного полотна с учетом требований 2.5.262. Крепление проводов на этих опорах должно осуществляться поддерживающими двухцепными гирляндами изоляторов с глухими зажимами. ¶

На промежуточных опорах с поддерживающими гирляндами изоляторов провода должны быть подвешены в глухих зажимах, на опорах со штыревыми изоляторами должно применяться двойное крепление проводов на ВЛ и усиленное крепление на ВЛЗ. ¶

При сооружении новых автомобильных дорог всех категорий и прохождении их под действующими ВЛ 500-750 кВ переустройство ВЛ не требуется, если выдерживаются наименьшие расстояния в соответствии с табл.2.5.35. ¶

Таблица 2.5.35. Наименьшие расстояния при пересечении и сближении ВЛ с автомобильными дорогами.

Пересечение, сближение или параллельное следование

Наименьшие расстояния, м, при напряжении ВЛ, кВ

Источник

Раздел 5. Определение превышений и отметок точек. Нивелир. Виды и способы нивелирования.

5.1. Задачи и виды нивелирования;

5.2. Способы геометрического нивелирования;

5.3. Классификация нивелиров;

5.4. Нивелирные рейки;

5.5. Влияние кривизны Земли и рефракции на результаты геометрического нивелирования.

Конспект основных тезисов по темам:

Нивелирование – совокупность геодезических измерений для определения превышений между точками, а также их высот.

Нивелирование используют для изучения рельефа, а также для определения высот точек при изысканиях, проектировании, строительстве и эксплуатации различных инженерных сооружений.

Основные виды нивелирования:

Геометрическое нивелирование – превышение одной точки над другой определяется при помощи горизонтального визирного луча. При этом используются нивелиры, либо другие приборы (лазерные уровни), позволяющие получать горизонтальный луч.

Тригонометрическое нивелирование – превышение одной точки над другой определяется при помощи наклонного визирного луча, измеряя при этом угол наклона между точками и расстояние между ними. При этом используются теодолиты-тахеометры.

Другие виды нивелирования:

— Определение превышений по результатам спутниковых измерений (ГЛОНАСС).

Два способа геометрического нивелирования:

image026

НА – отметка точки А; НВ – отметка точки В; h – превышение; НГИ – отметка горизонта инструмента; V – высота инструмента; З – отсчёт по задней рейке; П – отсчёт по передней рейке.

а) Способ «из середины».

Превышение между точками определяют по формуле: h = З – П (см.рисунок)

Нивелир устанавливают непосредственно над точкой А, измеряют его высоту V (от поверхности земли до оси зрительной трубы) и берут отсчёт П по рейке в точке В.

Превышение определяют вычитанием из высоты прибора V отсчёта П :

Высоту передней точки В расчитывают по формуле

Высота визирного луча над уровенной поверхностью называется: Горизонт инструмента.

Место установки нивелира называется: Станция.

Иногда для определения превышения между точками А и В недостаточно одной установки нивелира (одной станции). Тогда использут ряд последовательных измерений с промежуточными (связующими) точками установки (промежуточными станциями): Последовательное нивелирование.

Схему последовательного нивелирования называют: Нивелирный ход.

image027

Основные части оптического нивелира:

Нивелир технического класса точности (обычно используемый в строительстве) состоит из следующих основных частей: Основание; Подставка; Горизонтальный круг; Оптическая зрительная труба; Круглый пузырьковый уровень; Регулировочные винты.

Современные оптические нивелиры оснащаются компенсатором: Свободно подвешенная оптико-механическая система, которая приводит визирный луч в горизонтальное положение.

Для приведение в рабочее состояние достаточно установить нивелир на штатив и регулировочными винтами установить пузырёк круглого уровня внутрь круга. Дальнейшая установка оси зрительной трубы в горизонтальное положение происходит автоматически.

Нивелирные рейки для нивелирования технического класса точности изготавливают деревянными складными или металлическими (из алюминиевого сплава) раздвижными (телескопическими).

Деревянные нивелирные рейки имеют полную длину 3 метра, с обеих сторон они имеют сантиметровые деления.

Алюминиевые нивелирные рейки имеют полную длину 3 или 5 метров, с одной стороны они имеют сантиметровые деления, а с другой стороны – милиметровые.

Визирный луч в пространстве прямолинеен. Уровенная поверхность не является плоскостью, следовательно, с увеличением расстояния нивелирования возникает необходимость внесения в расчёты поправки на кривизну Земли.

image028

Поправка на кривизну Земли

При милиметровой точности измерений следует учитывать поправку на кривизну земли уже при расстояниях нивелирования 100 метров и более.

Вопросы для контроля:

1. Что называется нивелированием?

2. Какие существуют виды нивелирования?

3. Два способа геометрического нивелирования.

4. Назовите основные части нивелира.

5. Когда можно не учитывать поправки на кривизну Земли при геометрическом нивелировании?

image084

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

image062

image054

image052

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Adblock
detector