- Взаимное расположение прямых в пространстве
- Расстояние между параллельными прямыми
- Расстояние между скрещивающимися прямыми
- Угол между прямыми
- Взаимное расположение прямой и плоскости
- Угол между прямой и плоскостью
- Геометрия. 10 класс
- Точка пересечения прямых в пространстве онлайн
- Предупреждение
- Точка пересечения прямых в пространстве − теория, примеры и решения
- 1. Точка пересечения прямых в пространстве, заданных в каноническом виде.
- 2. Точка пересечения прямых в пространстве, заданных в параметрическом виде.
- 3. Точка пересечения прямых в пространстве, заданных в разных видах.
- 4. Примеры нахождения точки пересечения прямых в пространстве.
- Прямая в пространстве – необходимые сведения
- Прямая в пространстве – понятие
- Взаимное расположение прямых в пространстве
- Способы задания прямой в пространстве
Взаимное расположение прямых в пространстве
Возможны четыре различных случая расположения двух прямых в пространстве:
– прямые скрещивающиеся, т.е. не лежат в одной плоскости;
– прямые пересекаются, т.е. лежат в одной плоскости и имеют одну общую точку;
– прямые параллельные, т.е. лежат в одной плоскости и не пересекаются;
Получим признаки этих случаев взаимного расположения прямых, заданных каноническими уравнениями
где — точки, принадлежащие прямым и соответственно, a — направляющие векторы (рис.4.34). Обозначим через вектор, соединяющий заданные точки.
Перечисленным выше случаям взаимного расположения прямых и соответствуют следующие признаки:
– прямые и скрещивающиеся векторы не компланарны;
– прямые и пересекаются векторы компланарны, а векторы не коллинеарны;
– прямые и параллельные векторы коллинеарны, а векторы не коллинеарны;
– прямые и совпадают векторы коллинеарны.
Эти условия можно записать, используя свойства смешанного и векторного произведений. Напомним, что смешанное произведение векторов в правой прямоугольной системе координат находится по формуле:
Равенство нулю смешанного произведения векторов является необходимым и достаточным условием их компланарности. Поэтому:
– прямые и скрещивающиеся определитель отличен от нуля;
– прямые и пересекаются определитель равен нулю, а вторая и третья его строки не пропорциональны, т.е.
– прямые и параллельные вторая и третья строки определителя пропорциональны, т.е. а первые две строки не пропорциональны, т.е.
– прямые и совпадают все строки определителя пропорциональны, т.е.
Расстояние между параллельными прямыми
Найдем расстояние между параллельными прямыми, заданными каноническими уравнениями (рис.4.35)
где — произвольные точки на прямых и соответственно, а координаты направляющих векторов прямых пропорциональны:
Расстояние между скрещивающимися прямыми
Напомним, что расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра, т.е. кратчайшее расстояние между точками этих прямых.
Найдем расстояние между скрещивающимися прямыми, заданными каноническими уравнениями
где — произвольные точки на прямых и соответственно.
Искомое расстояние равно высоте параллелепипеда, построенного на векторах (рис.4.36), т.е.
— смешанное и векторное произведения векторов. Как показано выше, прямые и скрещивающиеся тогда и только тогда, когда векторы некомпланарные, т.е.
Отсюда следует, что вторая и третья строки не пропорциональны. Поэтому векторы неколлинеарные, т.е. и знаменатель в правой части (4.38) отличен от нуля.
Угол между прямыми
Угол между прямыми определяется как угол между их направляющими векторами. Поэтому величина острого угла между прямыми
вычисляется по формуле
Решение. Каноническое уравнение оси абсцисс имеет вид так как ось проходит через точку а — ее направляющий вектор. Каноническое уравнение прямой получено в примере 4.15,»а»:
Полагая по формуле (4.38) получаем:
Острый угол находим по формуле (4.39):
Взаимное расположение прямой и плоскости
Возможны три случая взаимного расположения прямой и плоскости:
– прямая и плоскость пересекаются, т.е. имеют одну общую точку;
– прямая и плоскость параллельны, т.е. не имеют общих точек;
– прямая лежит в плоскости, т.е. все точки прямой принадлежат плоскости.
Получим признаки для всех этих случаев. Пусть прямая и плоскость заданы уравнениями:
т.е. прямая проходит через точку коллинеарно вектору а плоскость перпендикулярна вектору
Перечисленным выше случаям взаимного расположения прямой и плоскости соответствуют следующие признаки:
– прямая и плоскость пересекаются векторы и не ортогональны (рис.4.37,а);
– прямая и плоскость параллельны векторы и ортогональны, а точка не принадлежит плоскости (рис.4.37,б);
– прямая лежит в плоскости векторы и ортогональны, а точка принадлежит плоскости (рис.4.37,в).
Учитывая свойство скалярного произведения векторов получаем:
– прямая и плоскость пересекаются ;
– прямая и плоскость параллельны
– прямая лежит в плоскости
Угол между прямой и плоскостью
Отсюда, например, следует полученное ранее необходимое условие параллельности прямой и плоскости.
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №5. Взаимное расположение прямых в пространстве
Перечень вопросов, рассматриваемых в теме
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.
Два отрезка называются параллельными, если они лежат на паралельных прямых.
Открытый электронный ресурс:
Теоретический материал для самостоятельного изучения
Мы уже знаем, что прямы в пространстве могут располагаться параллельно или пересекаться. Существует еще один вид- скрещивающиеся прямые. С ним мы мимолетно познакомились на предыдущем уроке. А сегодня нам предстоит разобраться с этой темой более подробно.
Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости. (рис. 1)
Рисунок 1 – скрещивающиеся прямые
На прошлом уроке в качестве наглядного примера нами был приведен куб.
Сегодня предлагаем вам обратить внимание на окружающую вас обстановку и найти в ней скрещивающиеся прямые.
Примеры скрещивающихся прямых вокруг нас:
Одна дорога проходит по эстакаде, а другая под эстакадой
Горизонтальные линии крыши и вертикальные линии стен
Разберем и докажем теорему, которая выражает признак скрещивающихся прямых.
Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).
Доказательство.
Рассмотрим прямую AB лежащую в плоскости и прямую CD, которая пересекает плоскoсть в точке D, не лежащей на прямой AB (рис. 2).
Рисунок 2 – скрещивающиеся прямые АВ и СD
Итак, возможны три случая расположения прямых в пространстве:
Разберем и докажем еще одну теорему о скрещивающихся прямых.
Теорема. Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.
Доказательство
Рассмотрим скрещивающиеся прямые AB и CD.(рис. 3)
1. Через точку D можно провести прямую DE параллельную AB.
2. Через пересекающиеся прямые CD и DE можно провести плоскость α
3. Так как прямая АB не лежит в этой плоскости и параллельна прямой DE, то она параллельна плоскости.
4. Эта плоскость единственная, так как любая другая плоскость, проходящая через CD, будет пересекаться с DE и AB, которая ей параллельна.
Теорема доказана.
Рисунок 3 – прямые АВ, СD, DЕ
Любая прямая, например ОО1, рассекает плоскость на две полуплоскости. Если лучи ОА и О1А1 параллельны и лежат в одной полуплоскости, то они называются сонаправленными.
Лучи О1А1 и ОА не являются сонаправленными. Они параллельны, но не лежат в одной полуплоскости. (рис. 4)
Рисунок 4 – сонаправленные лучи
Теорема.Если стороны двух углов соответственно сонаправленны, то такие углы равны. (рис. 5)
Доказательство:
при доказательстве ограничимся случаем, когда углы лежат в разных плоскостях.
Отметим на сторонах угла O произвольные точки A и B.
На соответствующих сторонах угла O1 отложим отрезки OA1 и O₁B₁ равные соответственно ОA и OB.
2. В плоскости рассмотрим четырехугольник OAA1O1.
Так как противолежащие стороны OA и O1A1 этого четырехугольника равны и параллельны по условию, то этот четырехугольник– параллелограмм и, следовательно, равны и параллельны стороны AA1 и OO1.
3. В плоскости, аналогично можно доказать, что OBB1O1 параллелограмм, поэтому равны и параллельны стороны ВВ1 и OO1.
4. Если две отрезка AA1 и BB1 равны параллельны третьему отрезку OO1, значит, они равны и параллельны, т. е. АА1||BB1 и AA1 = BB1.
По определению четырехугольник АВВ1А1 – параллелограмм и из этого получаем АВ=А1В1.
5.Из выше построенного и доказанного АВ=А1В1, ОA =O1A1 и OB =O1B1 следует, что треугольники AOB и A1 O1 B1. равны по трем сторонам, и поэтому О= О1.
Рисунок 5 – равные углы с сонаправленными сторонами
Точка пересечения прямых в пространстве онлайн
С помощю этого онлайн калькулятора можно найти точку пересечения прямых в пространстве. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямых задайте вид уравнения прямых («канонический» или «параметрический» ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.
Предупреждение
Точка пересечения прямых в пространстве − теория, примеры и решения
1. Точка пересечения прямых в пространстве, заданных в каноническом виде.
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:
, | (1) |
, | (2) |
Найти точку пересечения прямых L1 и L2 (Рис.1).
Запишем уравнение (1) в виде системы двух линейных уравнений:
Сделаем перекрестное умножение в уравнениях (3) и (4):
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Аналогичным образом преобразуем уравнение (2):
Запишем уравнение (2) в виде системы двух линейных уравнений:
Сделаем перекрестное умножение в уравнениях (7) и (8):
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Решим систему линейных уравнений (5), (6), (9), (10) с тремя неизвестными x, y, z. Для этого представим эту систему в матричном виде:
2. Точка пересечения прямых в пространстве, заданных в параметрическом виде.
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 в параметрическом виде:
Задачу нахождения нахождения точки пересечения прямых L1 и L2 можно решить разными методами.
Метод 1. Приведем уравнения прямых L1 и L2 к каноническому виду.
Для приведения уравнения (12) к каноническому виду, выразим параметр t через остальные переменные:
Так как левые части уравнений (14) равны, то можем записать:
Аналогичным образом приведем уравнение прямой L2 к каноническому виду:
Далее, для нахождения точки пересечения прямых, заданных в каноническом виде нужно воспользоваться параграфом 1.
Метод 2. Для нахождения точки пересечения прямых L1 и L2 решим совместно уравнения (12) и (13). Из уравнений (12) и (13) следует:
Из каждого уравнения (17),(18),(19) находим переменную t. Далее из полученных значений t выбираем те, которые удовлетворяют всем уравнениям (17)−(19). Если такое значение t не существует, то прямые не пересекаются. Если таких значений больше одного, то прямые совпадают. Если же такое значение t единственно, то подставляя это зачение t в (12) или в (13), получим координаты точки пересечения прямых (12) и (13).
3. Точка пересечения прямых в пространстве, заданных в разных видах.
Если уравнения прямых заданы в разных видах, то можно их привести к одному виду (к каноническому или к параметрическому) и найти точку пересечения прямых, описанных выше.
4. Примеры нахождения точки пересечения прямых в пространстве.
Пример 1. Найти точку пересечения прямых L1 и L2:
Представим уравнение (20) в виде двух уравнений:
Сделаем перекрестное умножение в уравнениях (22) и (23):
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Аналогичным образом поступим и с уравнением (2).
Представим уравнение (2) в виде двух уравнений:
Сделаем перекрестное умножение в уравнениях (7) и (8)
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Решим систему линейных уравнений (24), (25), (28), (29) с тремя неизвестными x, y, z. Для этого представим эту систему в виде матричного уравнения:
Решим систему линейных уравнений (30) отностительно x, y, z. Для решения системы, построим расширенную матрицу:
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строку 3 со строкой 1, умноженной на −1:
Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 4 со строкой 2, умноженной на −1/4:
Сделаем перестановку строк 3 и 4.
Второй этап. Обратный ход Гаусса.
Исключим элементы 3-го столбца матрицы выше элемента a33. Для этого сложим строку 2 со строкой 3, умноженной на −4/3:
Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на 3/4:
Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):
Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:
Пример 2. Найти точку пересечения прямых L1 и L2:
Приведем параметрическое уравнение прямой L1 к каноническому виду. Выразим параметр t через остальные переменные:
Из равентсв выше получим каноническое уравнение прямой:
Представим уравнение (33) в виде двух уравнений:
Сделаем перекрестное умножение в уравнениях (34 и (35):
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Аналогичным образом поступим и с уравнением (2).
Представим уравнение (2) в виде двух уравнений:
Сделаем перекрестное умножение в уравнениях (38) и (39)
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Решим систему линейных уравнений (36), (37), (40), (41) с тремя неизвестными x, y, z. Для этого представим эту систему в виде матричного уравнения:
Решим систему линейных уравнений (42) отностительно x, y, z. Для решения системы, построим расширенную матрицу:
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строку 3 со строкой 1, умноженной на −1/6:
Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строки 3 и 4 со строкой 2, умноженной на 8/21 и −1/7, соответственно:
Из расширенной матрицы восстановим последнюю систему линейных уравнений:
Уравнение (43) несовместна, так как несуществуют числа x, y, z удовлетворяющие уравнению (43). Следовательно система линейных уравнений (42) не имеет решения. Тогда прямые L1 и L2 не пересекаются. То есть они или параллельны, или скрещиваются.
Прямая в пространстве – необходимые сведения
Статья рассказывает о взаимном расположении линий в пространстве. Будут рассмотрены основные способы задания прямой с приведением примеров и наглядных рисунков.
Прямая в пространстве – понятие
Раздел о прямой на плоскости дает представление о течки и прямой. Расположение прямой в пространстве аналогично. Если мысленно отметить две точки и провести линию, соединив их, получим прямую, уходящую в бесконечность.
Точки, прямые и отрезки в пространстве обозначаются аналогично расположению в плоскости.
Если прямая располагается на плоскости в пространстве, тогда это можно подкрепить аксиомами:
Имеет место аксиома, благодаря которой можно рассматривать прямую в пространстве в качестве двух пересеченных плоскостей:
Если две плоскости имеют общую точку, тогда имеют общую прямую, на которой лежат все общие точки этих плоскостей. Показано на рисунке, приведенном ниже.
Взаимное расположение прямых в пространстве
Две прямые, расположенные в пространстве, могут пересекаться в случае наличия одной общей точки.
Данный случай говорит о том, что прямые располагаются на плоскости трехмерного пространства. Когда прямые, расположенные в пространстве, пересекаются, то переходим к определению угла между пересекающимися прямыми.
Две прямые пространства параллельны в том случае, если расположены в одной плоскости без общих точек.
Рассмотрим ниже расположение параллельных прямых.
После рассмотрения определения параллельных прямых, расположенных в пространстве, необходимо добавить о направляющих векторах прямой.
Ненулевой вектор, который располагается на прямой или на параллельной ему прямой, называют направляющим вектором данной прямой.
Если по условию дана линия в пространстве, то он используется для решения задач.
Две прямые пространства могут быть скрещивающимися.
Две прямые называют скрещивающимися, при условии, что они лежат в одной плоскости.
Это тесно связано с определением угла между скрещивающимися прямыми.
Особым случаем считается пересечение или скрещивание прямых под прямым углом в пространстве. Их называют перпендикулярными. Рассмотрим на рисунке.
Способы задания прямой в пространстве
Для того, чтобы расположить прямую в пространстве, существует несколько методов.
Из аксиомы для двух точек плоскости имеем, что через них может быть задана единственная прямая. При расположении двух точек в пространстве также задается только одна прямая, проходящая через них.
При прямоугольной системе координат прямая задается с помощью координат точек, которые располагаются в трехмерном пространстве. Это и позволяет составить уравнение прямой, проходящей через две заданные точки.
Еще один способ задания прямой – это теорема. Через любую точку пространства, не лежащую на данной прямой, может проходить прямая, параллельная данной, причем только одна.
Отсюда следует, что при задавании прямой и точки, не лежащей на ней, сможем определить прямую, которая параллельна заданной и проходит через указанную точку.
Есть способ, когда можно указать точку, направляющий вектор и прямую, которая проходит через нее. При задании прямой относительно прямоугольной систему координат, можно говорить о канонических и параметрических уравнениях прямой в пространстве.
Немаловажный способ задания прямой – это способ, основанный на аксиоме: если две плоскости имеют общую точку, тогда имеют общую прямую, где располагаются общие точки заданных плоскостей. При задании двух пересекающихся плоскостей можно определить прямую пространства.
Если задана плоскость и нележащая в ней точка, тогда существует прямая, проходящая через нее и перпендикулярная заданной плоскости, причем только одна. Этот способ задания базируется на теореме. Получаем, что для определения прямой достаточно задать плоскость, перпендикулярную ей, с точкой, через которую проходит заданная прямая.
В случае, если прямая задается относительно введенной прямоугольной системы координат, то следует укрепить знания из статьиуравнения прямой, проходящей через заданную точку перпендикулярно в заданной плоскости.Рассмотрим задание прямой, используя точку, через которую она пройдет, и плоскости, которая располагается перпендикулярно относительно заданной прямой.